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AFIT-ENG-13-M-49
Abstract

Research into classification using Anomaly Detection (AD) within the field of Network
Intrusion Detection (NID), or Network Intrusion Anomaly Detection (NIAD), is common,
but operational use of the classifiers discovered by research is not. One reason for the
lack of operational use is most published testing of AD methods uses artificial datasets:
making it difficult to determine how well published results apply to other datasets and the
networks they represent. This research develops a method to predict the accuracy of an
AD-based classifier when applied to a new dataset, based on the difference between an
already classified dataset and the new dataset. The resulting method does not accurately
predict classifier accuracy, but does allow some information to be gained regarding the
possible range of accuracy. Further refinement of this method could allow rapid operational
application of new techniques within the NIAD field, and quick selection of the classifier(s)

that will be most accurate for the network.
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NETWORK INTRUSION DATASET ASSESSMENT

I. Introduction

Network Intrusion (NI) refers to a myriad of techniques and technologies that can be
used to penetrate and exploit computer networks. NI datasets are collections of network
traffic that evaluate new Network Intrusion Detection (NID) classifiers. There are two types
of NID classifiers: Anomaly Detection (AD) and misuse.

Recently, there has been significant focus on attacks vectored through gaps in network
security, leading to renewed interest in the effectiveness of intrusion prevention measures.
However, to prevent intrusion there needs to be an effective method of Intrusion Detection
(ID). As misuse detection is unable to detect novel attacks, the focus has rested largely on

applications of AD to the NID field, or Network Intrusion Anomaly Detection (NIAD).

1.1 Problem Statement

The objective of this research is to develop a system by which the differences measured
between networks can be used to predict the corresponding change in classifier performance.
In the NIAD field networks are examined via traffic captured from the network, which is
then converted into a dataset by generating features from that traffic. The use of datasets to
attempt to examine networks is widespread and accepted, therefore this research will use
the terms network and dataset interchangeably.

The lack of a standard method to compare datasets (thus networks) means there is
little connection between the research and real-world systems: most current research is
inapplicable to operational systems without expensive testing. While methods are available

for measuring the theoretical upper-bound on the capability of a Network Intrusion Detection



System (NIDS) [22], there is little information published in the field on the use of datasets to
evaluate NIDS. NIDS developers could use a method of predicting the change in classifier
performance between datasets as a metric when developing new classifiers.

Specifically, the goals of this research are to:

e develop a structure suitable for conducting experiments on the correlations of the

difference between datasets and the corresponding change in classifier performance,
e identify difference measures which correlate to changes in classifier performance,

e build and evaluate a system to predict the difference in classifier accuracy between

two datasets.

All goals were achieved by this research effort. Analysis identified multiple difference
measures that correlated to various classifier performance measures, and the model
developed during research is able to predict classifier performance change based on

differences between datasets.

1.2 Contributions

This research provides two significant contributions to the field of NIAD. First, this
research demonstrates consistent correlation of the differences between datasets and the
changes in corresponding classifier performance measures. While the correlations found
were not high, they demonstrate a relationship between the difference measures used in this
research and the performance of a wide range of classifiers.

Second, this research provides a new way of approaching the, “No free lunch theorem,”
proposed by Wolpert and Macready [61] as it may apply to finding an optimal classifier for
a given dataset. Approaching the problem of selecting a classifier for a particular dataset
as an optimization problem, and trying to predict the outcome of the classifier using the

differences between datasets, provides a new framework within which to approach the

problem of classifier selection.



1.3 Overview

Chapter 2 examines the topics surrounding NIAD and summarizes the phases of ID.
It then provides an overview of the available NI datasets along with a discussion of the
different types of datasets available. Once the available datasets are covered, methods of
dataset characterization are discussed leading into the last section in Chapter 2. The last
section reviews current research in the area of distance and similarity measures, along with
their possible uses in the NIAD field.

Chapter 3 describes the Classifier Accuracy Prediction System (CAPS) that is developed
to perform experiments on dataset differences and changes in classifier performance. The
parameters and boundaries of the CAPS are examined, as well as the factors and levels of
the experiment. Finally, discussion proceeds on how the experimental results are analyzed
and evaluated.

Chapter 4 reports the results of the three sets of experiments designed to accomplish
the goals set forth in Section 1.1. Analysis of the correlation within and across datasets
is performed, with visual checks occurring after the statistical analysis is complete. The
predictive model is developed and evaluated, and the results of that evaluation are reported.

Chapter 5 summarizes the experimental results, and provides an evaluation of the
quality of the predictive model. Based on the provided evidence, the conclusion is that there
is correlation of the difference between datasets and the corresponding change in classifier
performance. In addition to correlation, linear models are developed which are able to
predict accuracy across all classifiers, but not True Positive Rate (TPR) or False Positive

Rate (FPR).



II. Background

2.1 Related Work

The successful characterization of a Network Intrusion (NI) dataset, and of the
difference between two NI datasets, rests largely on how the differences and similarities
between the two datasets are quantified. In particular, the method of measuring the distance
or similarity between two datasets is critical to successful determination of whether two
datasets are similar in structure and content, and whether results of an evaluation on one
may apply to the other.

Within the Network Intrusion Anomaly Detection (NIAD) field the closest work to this
research is, “On the distance norms for detecting anomalies in multidimensional datasets,”
by Chmielewski and Wierzchon [9] which examines the problems inherent in using a form

of power (p, r)-distance. Power (p, r)-distance measures the distance between two vectors x

and y of length n.

[Z i - y,-l"] 2.1)
i=1

The particular distance used is determined by the values of p and r, where the values
assigned to each will sometimes result in distances that may be familiar to readers. In
example, where p = r = 2 the power (p, r)-distance is more commonly known as the
Euclidean metric, and p = r > 1 the power (p, r)-distance is known more generally as
the /,-metric. Chmielewski and Wierzchon use the /,-metric (Equation (2.1), p = r > 1),
fractional /,-distance (Equation (2.1), 0 < p = r < 1), and cosine similarity (Equation
(2.2)) to measure the distance between different samples of high-dimensional data. Cosine

similarity is shown in Equation (2.2), where ¢ is the angle between vectors x and y:

(2.2)



Through experimentation using differing values of p on the /,-metric, and using the
resulting distance in an application of negative selection to a NI dataset, they conclude
that values of p on the interval [0.5, 1.0] should provide an improvement in detection rate
compared to other values. While they do not address the issues of correlation between
difference and classifier performance measures, the examination of different forms of
distance is useful.

Outside the NIAD field the closest work to this research is, “Comprehensive Survey on
Distance/Similarity Measures between Probability Density Functions,” by Cha [6] which
provides a syntactic and semantic categorization of distance and similarity measures as
applied to probability distribution functions, as well as an analysis of the correlation between
different measures using clustering and presented in hierarchical clusters. While not a
review of how the measures are used, Cha’s work is a useful reference for distance measures
with an interesting partitioning based on how well the distance measures correlate to each
other. A similar work with different intent is the, “Encyclopedia of Distances,” by Deza
and Deza [15] which provides a comprehensive enumeration of the main distance measures
used within a variety of different fields. The cross-disciplinary manner in which the list of
distance measures is treated is especially useful when trying to identify measures used in
published works, as synonyms and similar formulations are referenced throughout.

In areas not directly related to measuring difference and similarity in multi-dimensional
datasets, but which may be useful in examining multi-dimensional datasets, there are
other significant works. Within, “Ontologies and Similarity,” Staab [52] examines the
relationships between ontologies and similarity measures, especially in light of the use of
measures within logical reasoning systems. Cunningham [11] develops, “A Taxonomy of
Similarity Mechanisms for Case-Based Reasoning,” which provides a useful structure for

reasoning about which similarity measures to use when first examining a problem.



2.2 Intrusion Detection Phases

Before discussing the NIAD field, it is useful to ensure common understanding of the
terms being used. As discussion herein is about the phases of Intrusion Detection (ID) and
datasets collected, defining the phases as used within this research is useful. Definitions of

the terms used to refer to those phases within this research follow.

e Preprocessing: Manipulation of the dataset required to allow the authors’ tools to
operate on the dataset that is presumed to have no effect on the outcome of the
experiment. For example, conversion from the comma-separated-value format to a
database table within a relational database may be required, leaving the values of the

features within the dataset unchanged.

e Feature generation: Creation of new features based on original or derived datasets.
For example, conversion of a feature with seven possible categorical values to seven

binary features.

e Selection: Selection of a subset of all available features or observations for use in

classification.
e Classification: Categorization of samples as a particular class.

2.3 Network Intrusion Datasets

Careful dataset creation can allow NIAD classifiers to be tested against NI datasets
which are representative of specific networks, thus enabling quantifiable comparison with
respect to a particular network. However, the difficulties involved in collecting and sharing
network traffic [31] have prevented, thus far, the creation of any recent and widely-accepted
field-wide standard datasets [16] or standard methods by which NIAD classifiers may be
evaluated [32]. The lack of standard datasets and methods engenders questions of how
Network Intrusion Detection (NID) are compared, what datasets are used in the comparisons,

and whether the comparisons are valid.



A challenge to research into the state of NI datasets is the definition of the term dataset.
The meaning of the term dataset differs among fields of study. In the context of NI, dataset
can mean a collection of data from any number of different sources, from host system
log files to raw packet captures. To refine the scope of this review, in this paper the term
dataset will refer to a collection of captured packets from live network traffic and any
resultant meta-data (such as flow information), or a collection of rules to generate packets
representing network traffic. Application level data (such as logs) and related analysis tools
are not considered as part of this review.

There is a lack of comprehensive recent surveys in the area of NI datasets. The most
recent work, “Public domain datasets for optimizing NI and machine learning approaches,”
by Deraman et al. [14] focused on the availability of public domain datasets and repositories,
rather than the qualities needed in future benchmark datasets. The authors identify the
need for researchers to share datasets, and discuss how quality datasets would prove useful
in NI research. The work closest to a review , the paper “Toward Credible Evaluation of
Anomaly-Based Intrusion-Detection Methods,” by Tavallaee et al. [56] is focused on the
state of the art in Anomaly Detection (AD) methods, and in identifying pitfalls encountered
in published works between 2000 and 2008. They examine 276 studies and encounter a
wide variety of problems within the studies. The problems can be summarized as relating to
dataset choice and use, poor experimental practices, ineffective presentation of results, and
lack of consideration for efficiency in the proposed methods.

Another work close to this review, “Uses and Challenges for Network Datasets,” by
Heidemann and Papdopoulos [24] is more general in scope. The authors address current
research and open questions about network traffic and topology, and which classes of data
are collected and used. They examine lessons learned from their research in the areas
of privacy and anonymization, and how validation of NID approaches require weak data

anonymization. Repeated collection of data is suggested as a way to maintain available



datasets relevant to modern network traffic patterns. They also suggest that multiple datasets
of the same type be collected and released to provide the ability to cross-check data. Finally,
they describe future work in improving anonymization of captured data, understanding
attacks on privacy, capturing and managing annotation and meta-data, focusing on datasets
collected from other access types, and developing best practices to deal with the social and
legal tension between research and privacy. Heidemann and Papdopoulos were thorough in
their coverage of network traffic datasets, and their conclusions apply equally to NI datasets
(a subset of network traffic datasets).

Other related studies have been done in validating measurement-based networking
research [32], developing an information-theoretic model to describe and evaluate NID
systems [22], devising a new metric with which to measure intrusion detection capability
[21], surveying the available anomaly-based NID techniques and systems [18], and lessons
from technical to legal learned while documenting dataset collection methodology [41].

There are few datasets available that are used in NIAD classifier performance validation.
The lack of available datasets is surprising given that the amount of recent work on NID has
inspired multiple recent surveys of the subject area: Sommer and Paxson [48] examine the
problems encountered when using machine learning to perform NIAD, and set guidelines
intended to strengthen AD research. Davis and Clark [12] review the techniques being used
in AD preprocessing, and concludes that deep packet inspection and the features derived
thereby are required to detect current attacks. Deb et al. [13] cover the NIAD state of
the art in wireless ad-hoc and mesh networks, and determine that more work is needed in
development of scalable cross-layer Network Intrusion Detection System (NIDS) in the
wireless domain. Jyothsna et al. [29] survey the full NIAD field giving an overview of the
different methods used to detect anomalous patterns in network traffic. Finally, Vigna [59]
examines the history of NID research, and identifies the important role context will play in

future NID research. The volume of recent work indicates interest in the field, but research



into new approaches and validation of new NIAD classifiers tends to use one particular
dataset: 1999 Knowledge Discovery and Data Mining Tools Competition (KDD99) dataset
[53].

2.3.1 1999 Knowledge Discovery and Data Mining Tools Competition Dataset.

The KDD99 dataset [35] is derived from raw packet data generated during a 1998
Intrusion Detection Evaluation (IDEVAL), and contains seven million connection records
each with 41 distinct features. The IDEVAL was performed for the Defense Advanced
Research Projects Agency (DARPA) by the Massachusetts Institute of Technology’s Lincoln
Laboratory. Since then, it has become the de facto standard used in research on new NIAD
approaches. Multiple studies have analyzed the utility of the KDD99 dataset for NIAD
evaluation, but conclusions as to its use as a benchmark dataset vary: Cho et al. [10]
recommend not using the KDD99 dataset at all, while Engen et al. [16] suggest that more
care be taken in interpretation of results, but recommend continued use. As discussed by
Engen et al. [16], researchers continue to use the KDD99 dataset despite its problems for
two reasons: First, there is currently no better alternative freely available. Second, there
is a large body of work already based on the KDD99 dataset, thus new research may be
compared to the existing body of knowledge.

The source of the KDD99 dataset is the 1998 DARPA IDEVAL [36]. The IDEVAL
datasets are the largest completely labeled network attack datasets publicly available as
full packet captures. The IDEVAL datasets contain a total of 10 weeks of training data,
four weeks of test data, and sample file system dumps. In total, the IDEVAL datasets are
composed of three distinct datasets — the 1998 evaluation data, the 1999 evaluation data, and
scenario specific runs done in 2000. Despite the comprehensiveness of the IDEVAL datasets,
their validity has been questioned by some researchers. McHugh [38] found significant
problems with the IDEVALSs structure, documentation, and resultant data; Mahoney and

Chan [37] found artifacts within the data, such as the time-to-live values for all attack packets



differing from the values for all normal packets; and Brugger [4] found that the IDEVAL
datasets’ background traffic did not emulate normal background traffic. While these flaws
impact the use of the IDEVAL datasets in NIAD analysis and validation, it remains the only
comprehensive fully labeled benchmark dataset in the field [16] and, thus, widely used.

2.3.2 NSL-KDD Dataset.

To correct the problems identified with the KDD99 dataset, Tavallaee et al. [55] created
the NSL-KDD dataset by removing redundant records from both the training and test sets
and randomly sampling the attack records to ensure that those records most difficult to
classify were more likely to be included. The sampling mechanism used by Tavallaee
et al. assigned records to categories based on the number of the 21 learners (classifiers
trained by one of the three samples utilized in the study) that correctly classified the record.
The percentage of records included in the NSL-KDD dataset from a particular category is
inversely proportional to the percentage of records in the KDD99 dataset of that category.
For example, records correctly identified by six to ten of the learners made up 0.07% of the
KDD99 dataset, so 99.93% of those records are included in the new dataset. In the process,
they reduced the number of records in the training and test sets to a reasonable number, thus
allowing use of the full NSL-KDD dataset instead of a sample [54]. The NSL-KDD dataset
is beginning to be used in research. Salama et al. [45] tested a hybrid NIAD scheme using
a deep belief network for feature reduction and a support vector machine to classify the
trace. Wang et al. [60] improved a Distance-based Classification Model, then tested the
new system on the NSL-KDD dataset. Iranmanesh et al. [25] demonstrated the efficacy of
selecting landmarks using Fuzzy C-Means for Incremental L-Isomap feature reduction by
applying the method to the NSL-KDD and other datasets. Lakhina et al. [33] applied a new
principal component analysis neural network algorithm to reduce the number of features
in the NSL-KDD dataset, resulting in reduced training time and improved accuracy. The

NSL-KDD dataset may replace the KDD99 dataset as the baseline in future NIAD research.
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2.3.3 Kyoto Dataset.

The Kyoto University Benchmark dataset [49] consists of 3 years (November 2006
through August 2009) of data captured from honey pots, darknet sensors, a mail server, a web
crawler, and Windows XP installation. While very carefully constructed and comprehensive,
the dataset does not lend itself to evaluation of new NIAD classifiers for several reasons:
First, the Kyoto dataset contains only the values of specified features, and lacks the full
raw-data packet captures which would allow for implementation of future advances in
feature selection and extraction [5]. Second (and more importantly), the accuracy of the
labels in the Kyoto dataset is unknown [50]. The dataset consists of captured network traffic
automatically labeled using a Symantec Network Security 7160 appliance (discontinued
as of December 12, 2008), Clam Antivirus (updated once per hour), and dedicated shell
code detection software called Ashula [47]. The use of an Intrusion Detection System (IDS)
appliance to label records was necessary, as human labeling of that much traffic is impossible,
but when automated labeling is used the label accuracy comes into question [42]. Without a
certain distinction between normal and intrusion records, any NIAD evaluations based on
the Kyoto dataset are subject to error.

2.3.4 Other Datasets.

Several additional datasets of limited usefulness for evaluation of NIAD systems are
also publicly available, including the Information Exploration Shootout (IES) [20], NIMS1
[1], and University of Cambridge (UC) [40] datasets. The IES datasets consist of four attack
datasets, each of which contains only a single attack type, and a baseline set with no attacks
[19]. The IES datasets contain samples from only four attack types, as opposed to the
KDD99 dataset which contains data from a total of 22 different types. This lack of variety
in attack types may restrict the usefulness of IES as a dataset for NID algorithm validation.
The UC datasets are focused on classification of traffic types, and do not contain detailed

labels for the attacks [39], which may limit their usefulness in NID algorithm validation.
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The NIMS|1 datasets are focused on encrypted traffic classification: They do not contain any

labeled attacks or intrusion attempts [2], and may not be useful in NID algorithm validation.

2.4 Dataset Characterization

There are two key problems in NI dataset characterization: (1) Evaluation of the
accuracy of the labels within the dataset and (2) Evaluation of how well the dataset represents
the target traffic. Labeling has been addressed extensively in the literature, but there has been
little focus on dataset representation . One study by Joseph et al. [28] proposed a unique
validation method based on a community detection algorithm proposed by Schuetz et al.
[46]. The algorithm is a very fast method of detecting the communities (groupings) among
a network based on the difference between the number of connections between vertices and
the number of connections which would exist between those vertices were the connections
made randomly. The community detection algorithm results in a reasonable estimation
of the communities extant within a network. Joseph et al. use the algorithm proposed by
Schuetz et al. to produce a visualization of networks showing their communities. Multiple
graphical entities are produced to allow visual analysis and comparison of datasets. Circles
represent communities of hosts using particular protocols, where the diameter of the circle
is proportional to the number of hosts within the community. Lines between the circles
represent connections between hosts in the two communities, and the thickness of the line is
proportional to the number of connections between the two communities. See Figure 2.1 for
an example visualization, where the communities A, B, and C have 15, 20, and 30 hosts,

respectively; and lines AB, BC, and AC consist of 15, 25, and 35 connections, respectively.

Throughout the visual verification study, the supposition is that both dataset validation
and verification of the topology and protocol distribution of multiple networks is being
accomplished. However, the study does not specify which qualities of a dataset are being

examined to determine the validity of each dataset. Examining the topological properties of
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Figure 2.1: Example visualization of a small network consisting of three communities.

a network may be useful for general network traffic analysis, but defining which qualities of
the topological properties will be used to validate one network against another is necessary
if validation is the goal. The graphical visualization techniques and methods proposed in the
visual verification study may be useful for traffic distribution analysis, as the visualization
presented in the study is of traffic distribution and common protocol communities. The
visual verification approach may also provide a view of how well a dataset consisting of
generated traffic represents a particular network, but only in terms of protocol distribution
and connections between communities. Joseph et al. acknowledge that their method is
only useful to distinguish datasets with flawed topological and protocol distributions, and
does not completely verify the quality of datasets. As proposed, the visual verification
gives researchers a method of quickly viewing groupings within two networks to determine
a rough estimate of their comparability. There is also a significant problem in using this
method on collected traffic, as there is no verification of the traffic label accuracy. While the
proposed visual verification method could be used as part of a general dataset validation

methodology, alone it is unsuitable for quantitative NI dataset validation.
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Other researchers have worked on accurately classifying packets into different
categories to better understand the character of network traffic. Within the field of computer
network traffic classification, there have been many studies on how to categorize network
traffic, some of which are collected by Zhang et al. [62]. Focus has ranged from developing
software to assist in the comparison of different NIAD classifiers on the same datasets [34]
to an evaluation of the utility machine learning algorithms might have in network traffic
classification [51]. All of these classification methods could be useful in determining overall
patterns and distributions of network traffic. Identification of patterns and distributions
would then be useful in developing models for generating background traffic to be used in
NI datasets.

The severity of the labeling and representation accuracy problems depends on the type
of dataset being created. If properly collected, datasets based on captured raw traffic can
be assumed to be representative of the target network traffic [44]. However, the labels of
a captured dataset are suspect, and lead to uncertainty for any studies using that dataset.
Generated datasets, on the other hand, have accurate labels. However, there is currently
no identified way to ensure that a given generated dataset is sufficiently representative
of the target network traffic. As to hybrid methods of dataset creation, where there is a
mix of captured live traffic and generated traffic, it is unknown whether the labeling and
representation problems would be aggravated or diminished. One study by Mahoney and
Chan [37] presented results suggesting that simulation artifacts in generated traffic can
be eliminated by careful mixing of raw and generated traffic, but more work remains to
generalize those results. As summarized in Table 2.1, this review has not discovered a

method of dataset creation which results in both representative traffic and accurate labels.

Much research has been done on characterizing the IDEVAL [36] and derivative
KDD99 [53] datasets. Critiques of the problems inherent in those datasets serve to highlight

problems with generated datasets in general, and the methods used in their generation.
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Table 2.1: Certainty of characterization of dataset creation methods

Certainty of

Characterization

Dataset type  Labels  Representative

Captured Uncertain Certain
Generated Certain Uncertain
Hybrid Uncertain Uncertain

McHugh’s [38] analysis of IDEVAL resulted in recommendations including: The definition
of metrics to measure performance, a calibrated and validated field-wide generated dataset or
dataset generator, studies of false alarm rates in generated and collected datasets (to establish
a relationship), research into creation of a field-wide set of network attack taxonomies,
and a field-wide sharable source of recent attacks for use in research. Mahoney and Chan
[37] performed a thorough examination of possible simulation artifacts within the IDEVAL
datasets, and concluded that mixing real traffic with simulated traffic can remove those
artifacts leading to a better evaluation of NIDS capabilities. Multiple studies of IDEVAL
[16, 57] brought forth few new significant problems which generalize to simulated dataset
generation not already noted, although they did conclude IDEVAL is still useful as a baseline
for use in research.

NIAD research has been going on for many years. In spite of progress made in areas
of NIAD research, including classification [30], anomaly detection [7], signature based
detection [58], preprocessing [12], feature selection [8], and other topics; minimal work has
been done on improving the pedigree of datasets used to validate NIAD classifiers. Many

studies were performed with datasets local to the organization performing the research, or
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originating from packet captures restricted from general use for legal reasons. With the
different datasets used in performance evaluations over the years, it is difficult to accurately
compare the results of one to another.

When characterizing datasets, there is implicit in the characterization the ability to
compare one dataset to another. With the ability to compare one dataset to another, comes
the concept of the difference between datasets and a quantifiable measure of that difference:

the difference measure.

2.5 Difference Measures

There is a need to understand the current state of how distance measures are used in the
field of NI. Knowledge of how the distance and similarity measures are used is insufficient,
however, without knowledge of how well those measures used are identified by name or
formula (or both) within the recently published papers. To provide a thorough overview, a
recursive automated search is executed for the terms “network intrusion” in the title, abstract,
or keywords using Google Scholar. The number of papers returned is limited by restricting
the results to the first 100 returned papers, the depth of the reverse citation lookup to three,
and the year published to between 2008 and 2012 (inclusive). The results provide the source
for a random sample of the field.

There were 2,235 results returned by the search procedure. Due to time constraints a
two pass method was used to eliminate papers. In the first pass, suitability for inclusion
within the study is determined. Each paper is examined by hand and deemed unsuitable
if it is a duplicate of a paper already examined, unrelated to the NID field, or unavailable
electronically. Most of the papers are eliminated by that pass, leaving only 567. In the
second pass, the remaining 567 papers are more closely examined to eliminate reviews,
surveys, overviews, or examinations of the state of the art. The remaining 536 papers

represent the most recent published papers in the field of NI.
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As a full examination of all 536 papers is not possible within the time available,
approximately 20% of the papers are randomly selected for inclusion in this sample. Each

paper is examined to check for the following criteria.

1. The paper must contain results from classifying at least one NI dataset with the

purpose of identifying attacks.

2. The paper must be available in English, or have an identification and formulation of

distance measure use understandable regardless of the language.

The five papers that do not meet the two criteria above the number are discarded,
leaving 100 papers. Each of those 100 papers is then examined to determine how (and if)
the distance measures used within were named and formulated. For the full list of papers
included in the survey, see Appendix A.

2.5.1 Evaluation of Measure Specificity.

As there sometimes exist differences in the terminology used to describe measures used,
or between the formulation of each measure and those used in other works, this research
uses the Encyclopedia of Distances [15] as the standard listing of measures. Any names and
formulas found in the sample are compared to those within the Encyclopedia. It is useful to
categorize the papers based upon explicit naming and formulation of distance measures used
within the works, and the existence of those names and formulas within the Encyclopedia of
Distances, effectively separating them into the categories of Given and Not given. However,
it is apparent that some authors have developed new distance measures, or new names for
existing distance measures, in response to the specific needs of the research being conducted.
When the newly specified names and formulas are used, and are not identifiable in the
Encyclopedia of Distances, an additional category is necessary: the Novel category.

To quantify how well the name and formulation of each distance measure matched the
standard, a single set of categories are applied to the names and formulas used within each

work, and a single definition of each category is used.
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Among the works sampled for this review 60 of the papers did not provide a measure
name, and 68 of the papers did not provide an explicit formulation. The sample taken
indicates that most of the field does not provide names and formulas for the distance
measures used within their research, and thus makes replication difficult. Ensuring clarity
when specifying which and how each distance measure is used is critical to repeatability of
published works. Vague descriptions and assumed measures lead to confusion at best, and
incorrect implementations when attempting to duplicate experiments (thus incomparable
results) at worst.

It is evident many different distance measures are used by researchers, but unfortunate
how rarely they specify precisely which measures are used. One possible reason for the lack
of specificity is the difference in terminology which exists among fields [15]. In example,
if an author came to the AD field from the field of Ecology, or were familiar with the use
of similarities in that field, they may use the term, “niche overlap similarity,” [43] instead
of, “cosine similarity,” resulting in confusion to those unfamiliar with published works in
the field of Ecology. An examination of the methods used by authors that do explicitly
provide the name and formula of the measure(s) used, along with how clearly they explain
the application of the measure and the phase in which it was used, is undertaken below.

2.5.2 Evaluation of Measure Types Used.

It is useful to understand which types of measures are being used in the field of NIAD,
and which are not. When specifying the type of distance measure used, the names of types
defined within the Encyclopedia of Distances are used: power (p, r)-distance, distances on
distribution laws, and distances on strings and permutations. Disregarding the works without
specified distance measures, there are 40 works within which distance measures are at least

named, and three types of distances identified within the sampled works.
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The first type of distance, the power (p, r)-distance, is shown in Equation (2.1). All
instances of power (p, r)-distance observed within the sample used either the formula in
Equation (2.1), or one that is mathematically equivalent.

The second and third types of distance used within the sample do not have a specific
formula, as there is more variation among the implementations. The distribution of distance

measures within the 40 papers is listed in Table 2.2.

Table 2.2: Frequency of difference measure types used within sampled works.

Measure type Number of papers
Power (p, r)-distance 22
Distances on distribution laws 15
Distances on strings and permutations 3

The majority of the distance measures used within the sample are based on the power
(p, r)-distance and distances on distribution laws. Of the 22 uses of the power (p, r)-distance,
40% used Euclidean distance (p = r = 2). The sample shows that there is little exploration
of the possible use of other measures within the field, as most of the measures are based
upon the power (p, r)-distance or distances on distribution laws.

2.5.3 Distance Measure Categories.

In examining the types of distance measures used within the NI field, it is useful to
consider distance measures as part of distinct families or categories. The families selected
for this work are among those enumerated in, “Encyclopedia of Distances,” by Deza and
Deza [15], where it is noted that the selection of a similarity index or distance measure
is dependent in large part on the data. As there is no definitive taxonomy within the NID
field, the measures and indexes examined will be ordered by their relationship to families

of measures. As there are many published works in the NID field which do not identify
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and specify the distance measures used, the focus in this section is to examine those papers
which do both. This section provides examples of works in which the authors identify or
formulate the measures used in a manner conducive to repetition or extension of their work.
In particular, specificity when providing the formula for a distance or similarity measure
is useful when repeating or extending works, and should be the standard rather than the
exception. Unless otherwise noted below, the papers examined within this section provide
good examples allowing duplication of the performed experiments by future researchers.

During this review it became evident that the three measure families most commonly
used are those related to power (p, r)-distance, distances on distribution laws, and correlation
similarities and distances. First, and most common, power (p, r) distance has already been
defined in Section 2.5.2 and formulated in Equation (2.1). Second in popularity are distances
on distribution laws, measures that apply to probability distributions over variables with
the same range. Finally, correlation similarities and distances are measures that attempt to
characterize the correlation between two datasets, and treat that as a measure of similarity or
distance, rather than using the probability distributions or magnitude of vectors.

A large number of works within the NI field use power (p, r)-distance related distance
measures. In particular many use Euclidean distance, which is an expression of Equation
(2.1) where p = r = 2. To provide some intuition about what different p and r values would
mean when measuring the distance between two points, Figure 2.2 shows Voronoi diagrams

[3] constructed using the power (p, r)-distance while varying the value of p and r.

After the measures related to power (p,r)-distance, those related to distances on
distribution laws, or probability, were the next most common within the sample of the field
(see Subsection 2.5.1) and literature review. While there is almost always an aspect of
probabilistic behavior to any data collection and analysis, in this review the focus is on
those studies which specifically used probability in one of the NID processes identified in

Section 2.2.
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Figure 2.2: Voronoi diagrams using power (p, r)-distance with p = r = (2,1,0.75) (from

left to right).

One study in particular uses probability-related measures during feature selection.
Hancock and Lamont [23] develop a, “Multi agent system for network attack classification
using flow-based intrusion detection,” using the Bhattacharyya coefficient to rank features
according to the ability of each feature to distinguish one class from the others. The
Bhattacharyya coefficient is shown in Equation (2.3), where P; and P, are probability
distributions over the domain X, p;(x) is the probability of x occurring in Py, and p,(x) is
the probability of x occurring in P,.

p (PP = ) \Pi@pa(x) (2.3)
xeX

The three features with the largest overlap (largest p (P, P,) value) are selected after
rejecting any feature which is strongly correlated to a higher ranked feature to reduce
redundancy among selected features. The feature selection is part of their second design

iteration while pursuing the goal of an effective multi-agent NID system using reputation.
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Hancock and Lamont identify the distance measure by name, but do not specify a formula
with which to verify the work.

The least common measures used are those based on correlation similarities and
distances. Zhao et al. [63] use a single distance measure which incorporates one of three
correlation coeflicients to detect stepping-stone attacks, where one computer is used by
the attacker to reach another in, “Correlating TCP/IP Interactive Sessions with Correlation
Coefficient to Detect Stepping-Stone Intrusion.”

The first correlation is the Spearman p rank correlation. Equation (2.4) gives the
Spearman p rank correlation where X, and Y, contain the rankings of discrete variables X
and Y, x; and y; contain the i" rank in X, and Y, (respectively), X, and Y, have the same

number of elements, and » is the number of elements in X, .

6 Zn: (x; =y’
i=1

pX,.,Y,)=1- 11(n2——1)

(2.4)

The second correlation coefficient is similar to the Kendall 7 rank correlation. To
properly define the Kendall 7 rank correlation a preliminary definition is required. The sign,

or signum, function is defined in Equation (2.5).

-1, ifx<0
sign(0) =40,  ifx=0 (2.5)
1, ifx>0

The Kendall 7 rank correlation can then be defined using the sign function as in
Equation (2.6), where the sign function is used to calculate the number of discordant pairs
of ranks subtracted from the concordant pairs of ranks.

n=1 n
23 > sign(x; - x;) - sign(y; - )
i=1 j=i+1

(X, Y,) = pr— (2.6)
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The authors use an equivalent formulation, but to properly define the equivalent formula

a preliminary definition of the equals function is provided, as shown in Equation (2.7).

1, x=y
equals(x,y) = 2.7)

0, otherwise

The authors formulation of 7 can then be defined using the equals and sign functions,

and is shown in Equation (2.8).

n—1 n
4 Z Z equals(sign(x; — x;), sign(y; — y;))
i=1 j=i+1
7(X,,Y,) = i r— ~1 (2.8)

The third correlation coefficient is the Pearson product-moment correlation linear
coefficient, or r. The formula for r is given in Equation (2.9), where X is the mean of the

discrete variable X.

"X, Y) = - (2.9)

The authors use an equivalent formulation, defined in Equation (2.10).

n n n
DILEDIEPI
1 i=1 i=1

"X, Y) = = = (2.10)

Each measure is applied to the two traffic streams, and each result is subtracted from

one, to calculate the minimum distance between the two streams (o (X, Y)), as shown in

Equation (2.11).
o(X,Y) = min(l - p(X,,Y,),1 = 7'(X,,¥,),1 = r(X, Y)) (2.11)

If (X, 7Y) is less than a threshold set by the researcher, then the compared pair is

relayed traffic. The use of multiple correlation coeflicients within a single distance measure
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is a good example of using multiple measures to detect similarities a single measure might
not catch.

The predominant use of power (p,r)-distance and distances on distribution laws
provides guidance on areas which have been explored in the current body of research.
Also, the clear focus within the research on one or two measures per study is interesting, as it
indicates further study of a multitude of measures applied to a single problem is, effectively,
an open area.

Every experiment which utilizes AD in the NIAD field uses distance measures, most
without much thought as to which distance measure would be most appropriate. Current
research in the NIAD field is focused on the use of NIDS, rather than examining and
characterizing NI datasets and the networks from which they are derived. However, the
ways in which some distance and similarity measures are used can still be helpful in the
comparison of datasets, as classifiers are, in some sense, distance measures: The accuracy
of a specific classifier on a dataset, when compared with its accuracy on another, provides
some knowledge of the difference between the two datasets.

The analysis and characterization of datasets which happens during the preprocessing,
feature generation, and feature selection phases of NIDS is exactly what is needed when
determining how to compare datasets. Using the knowledge, techniques and tools available
in the NI field today, it should be possible to develop a methods to compare and characterize

datasets without having to evaluate them using classifiers and feature selectors.
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III. Methodology

The performance, or ability to successfully detect attacks, of a Network Intrusion
Anomaly Detection (NIAD) classifier depends heavily on the characteristics of the network.
The characteristics include the types of network traffic, frequency of attacks, and types
of attacks on that network. Because classifier performance depends on those factors, and
because those factors and classifier performance vary from network to network, there may
be a correlation between classifier performance on two networks and the differences between
those networks (provided the proper measure of difference can be found). In the NIAD field
networks are commonly examined through logs of network traffic that are converted into
datasets. As the focus of this work is on networks which are examined through datasets,
within this work network will be used interchangeably with dataset. The hypothesis to be

tested follows:

Hypothesis. The difference between two datasets, when calculated using the proper
difference measure, is correlated to the change in classifier performance between the

two datasets.

To detect a correlation between the performance of a classifier on two datasets and
the difference between the two datasets, there must be precise definitions of classifier
performance and the difference between networks. While usually distance is used to denote
a measured value representing the dissimilarity between two entities, distance is often
interpreted as requiring non-negativity. For that reason, difference is used throughout this
work to refer to the calculated measure of dissimilarity between two entities.

To measure classifier performance, three separate methods will be used. The first is the

classifier accuracy (A), which gives the overall ratio of correct classifications to number of
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samples. To calculate the accuracy of the classifier Equation (3.1) may be used:

A= P, +N,
P,+ N,

3.1)

where P, is the number of Actual Positives (AP) (total anomalous samples), P, is the
number of True Positives (TP) (correct anomalous classifications), N, is the number of
Actual Negatives (AN) (total normal samples), and N, the number of True Negatives (TN)
(correct normal classifications).

The second measure used is the true positive rate or sensitivity (Rp,), which gives the
proportion of correctly classified anomalous samples to the total number of anomalous
samples. Rp, can be calculated using the Equation (3.2):

P
Rp, = F; (3.2)

The third measure used is the false positive rate (Rp,), which provides the proportion
of incorrectly classified normal samples to the total number of normal samples. To calculate

Rp,, first the number of false positives must be calculated using Equation (3.3):
P; =N, - N, (3.3)
Once Py is known, then Rp, can be calculated using Equation (3.4):

P
Rp, = ﬁf

(3.4)

With a clear definition of classifier performance, the focus can shift to defining what is
meant by the difference when referring to datasets. Difference cannot initially be defined
as clearly as performance, as a primary goal of this research is identifying one or more
difference measures that properly characterize the difference between two networks and
correlates well with the difference between classifier performance on the two networks.
However, there are some characteristics of the difference between datasets that can be

defined clearly. The following characteristics are useful qualities for a difference measure in

this research.
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e The difference measure must be a scalar, to provide a summary of dissimilarity which

is also usable when developing a predictive model.

e The difference measure should provide both magnitude and sign, to adequately

correspond to the sign of the change in accuracy.

In addition to defining a standard measure of difference between networks, identifying
a difference measure which satisfies the above characteristics may be useful in predicting the
performance of many kinds of classifiers on one network, based on the difference between

that network and another.

3.1 Approach

To determine a suitable difference measure, identifying those elements of networks
which have the greatest effect on classifier performance is key. NIAD classifiers depend
on the separability of anomalous traffic, thus examining the ways traffic can be similar
provides a useful starting point for difference measure selection. In general, the Anomaly
Detection (AD) methods used in measuring differences between samples can be separated
into two broad categories: spatial and probabilistic.

Spatial methods use the features of two samples as coordinates within the sample
space, and compare the distance between two or more sets of samples to determine the
difference between the samples. Those methods are then generalized to more than two
samples, and used to measure the difference between two datasets. Probabilistic methods use
the distribution of values within the features of a dataset, instead of the values themselves, to
determine the overall probability distribution of the samples within the dataset. Measuring
the difference between two datasets is accomplished by calculating the difference between
the entropy of each dataset, using the probability distribution to calculate the entropy. As
both methods can be useful in measuring difference, measures from both categories are used

to measure difference in this work.
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In developing experiments to test the Hypothesis 3, it is first useful to provide a structure
that can be used to perform experiments. To do so, a System Under Test (SUT) is developed
which represents the possible inputs, processes, and outputs involved in testing Hypothesis

3.

3.2 System Boundaries

The System Under Test (SUT) is the Classifier Accuracy Prediction System (CAPS)
shown in Figure 3.1. The CAPS consists of an Anomaly Detection (AD) classifier, difference
measure, correlation function to indicate if change in performance has a linear or rank-
based correlation with the difference between the datasets, a linear model generator, and
a predictive error calculator. Determination of how well a classifier performed on a given
dataset is evaluated relative to how well it performed to another dataset. No attempt is
made to determine which classifier is better, and feature generation and selection are not
considered part of the test.

Generator Selector Difference Classifier
method algorithm measure Type

Classifier Accuracy Prediction System

Anomaly Correlation of
—>» Detection — difference
Classifier ' » Correlator gneasurgd to
classifier
performance
Datasets (D) change
Linear Prediction Quality of
| Model Error #Prediction
L, Difference | | Generator Calculator
measure

Figure 3.1: The System Under Test - CAPS
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The Component Under Test (CUT) is the difference measure. For identical datasets,
upon which any classifier should perform identically, the difference measured should be
statistically zero. For different datasets, the difference measured should be statistically

non-zero.

3.3 System Services

The CAPS provides two services. The first is a set of values indicating how the
difference measured among each pair of datasets correlates to the change in classifier
performance between each corresponding pair of datasets. The difference is calculated using
all difference measures. The second is the set of linear model prediction error values. To be
considered successful, the difference measured between each pair of datasets must correlate
consistently with classifier performance change between the same pair of datasets, and the
linear models must be able to predict the changes in classifier accuracy based only on the
differences measured between the datasets.

The CAPS takes as input a set of datasets (D). Each dataset is classified using an AD
classifier. The difference (6(i, j)) between every pair of datasets such that {d,-, dieDli+j }
is calculated. The change (¢(i, j)) in classifier performance between each pair of datasets is
also calculated. The correlations of the set of (i, j) and ¢(i, j) are calculated. The potential
value of each correlation coeflicient ranges from negative one to one. A zero means no
significant correlation was found between (i, j) and ¢(i, j), whereas a negative one or one

means (i, j) and ¢(i, j) are perfectly correlated.

3.4 Workload

The workload consists of the datasets being compared by the CAPS, and the features
included in each dataset. The features of the dataset are considered part of the workload
parameters because they contain the values being considered when differences are calculated,

therefore the correlation is based on these features.
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3.4.1 Datasets.

In Network Intrusion Anomaly Detection (NIAD) research, there are two primary
Network Intrusion (NI) datasets which have been used in the examination of AD classifiers:
the 1999 Knowledge Discovery and Data Mining Tools Competition (KDD99) dataset
[53] and the NSL-KDD [55] dataset. While those are ideal datasets to evaluate candidate
difference measures once the candidates have been identified, time-constraints demand the
use of less-complex datasets in the initial experiment.

The datasets used are a set of 38 2-D Synthetic Datasets [27], developed by Ji and
Dasgupta [26]. They are designed to be used in AD classifier evaluation, and represent
a variety of geometric shapes in different sizes as demonstrated by the visualization of
one dataset in Figure 3.2. As the training datasets contain only self or non-self samples

(depending on the perspective of the tester), only the test sets were used for this experiment.
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Figure 3.2: The normal and anomalous data points in Ring_midneg_test dataset. This is one

of 38 synthetic datasets developed to test the abilities of AD classifiers.
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As a result of using synthetic datasets of this type, there are limitations with regards to
the claims that can be made based on the experimental results. First, the results may not be
applicable to all datasets used within the NIAD field, but only to those which use datasets
similar to those used in this study. Second, by using datasets designed with geometric
shapes embedded within the data, there is an assumption made that datasets of interest will
have shapes, and that the shapes will define the separation between anomalous and normal
(non-self and self). That assumption may not be true for datasets commonly used in the
NIAD field. Third, and finally, the synthetic datasets are two dimensional, whereas NI
datasets can have tens or hundreds of dimensions. The results obtained here may not be
applicable to datasets with higher dimensions.

Each of the datasets used consists of 1000 samples with two features: x and y
coordinates on a plane. Although it is common in the classification field to label anomalous
and normal samples with a one and zero (respectively), the authors of these datasets labeled

the anomalous and normal samples as zero and two (respectively).

3.5 Performance Metrics

The two primary performance metrics are the correlation coefficients used to determine
the correlation between between the change in classifier performance and difference between
datasets, and the quality of predictions by the linear models. The experiment is considered
successful if there is consistent non-zero correlation between the dataset differences and
corresponding changes in classifier performance, and if the prediction quality is non-zero.

The first performance metric is composed of two correlations. The first correlation
is the Spearman rank correlation coefficient (p). The calculation of p requires the ranks
of the data, not the values. The sign of p indicates the direction of association between
the compared variables. The magnitude of p indicates whether the value of the response
variables (change in A, Rp,, and Rp f) are related monotonically to the predictor variable

(difference between datasets). Given that x and y contain the rankings of the predictor and
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response variables (respectively), I contains the total number of values, and n contains the

total number of ranks, p can be calculated using Equation (3.5):

6 2
p= 1—n(nz—_l);<xl~—y» (3.5)
The second correlation is the Pearson product-moment correlation coefficient (r). The
calculation of r indicates the linear dependence of the two variables. Given that x and y
vectors that contain the values of the predictor and response variables (respectively), and n
contains the total number of values, r can be calculated using Equation (3.6):
. Yimt i =0 =)
Vi (= X2 /2, 0 = )

The second performance metric is the quality of the linear model predictions. The

(3.6)

quality of prediction will be measured using the error between predicted and actual
accuracies, or residuals, by examining the distribution of the residuals with respect to
the distribution of the actual classifier performance values. Any ability to predict the actual
performance values will be considered success.

In addition to the two checks for correlation and prediction quality, the results will
be evaluated visually to ensure the results make sense. The first visual check is a series of
scatter plots, using the predictor variable as the x-coordinate and the response variable as
the y-coordinate.

The second visual check is a series of Quantile-Quantile (QQ) plots. A QQ plotis a
probability plot which compares two probability distributions (histograms) using the same
bins for each. The QQ plot is often used to compare a sample to a standard distribution, but
instead it will be used to compared the distributions of differences and performance changes.

Ideally, if they are from the same distribution they will align linearly along the diagonal.

3.6 System Parameters

The following parameters affect the correlation between performance and difference.
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3.6.1 Difference Measure.

The difference measured between two datasets (6(i, j)) should determine how far apart
two datasets are with respect to those characteristics which affect classifier performance.
It affects the correlation significantly, and six different measures are used to quantify the
difference between datasets.

The first five difference measures use entropy, as entropy gives an estimate of the
predictability of the values in a dataset. The ability to calculate entropy requires the
probability distribution of each feature (or each set of features), therefore the probability
distribution must be calculated first. Calculating the probability distribution can be
problematic in some datasets, because sometimes no value is repeated within a feature.
As a result of that limitation, the probability distribution is estimated as follows. First, a

reasonable bin-size is calculated using the Freedman-Diaconis rule [17].
h = 2IQR(X)n "3 (3.7)

The function IQR(X) returns the interquartile range of the data in a feature vector X,
and n is the number of observations in X. Once the bin-size (h) is known, the set of bin

edges e are calculated:

[ = min(X)
u = max(X)

u—1 3.8)
=[]

e = (=00, l+h,l+2h,...,1+(b—1)h,oco)
Those calculations are performed for each feature. Once the edges are known, the
values of each feature are sorted into bins while keeping count per bin. When complete the
researcher is left with an estimate of the probability distribution of all features (p(F)). With

p(F), the entropy of each feature can be calculated using the standard formula for entropy:

H(X) = = ) p(x)logy(p(x)) (3.9)

xeX
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where X is a feature in F (the set of all features).

The first difference measure is the difference between the sum of the entropy of each
feature in two datasets. It is identified as g, and is calculated between two datasets d; and
d; shown in Equation (3.10):

5= HX)= ) H() (3.10)
XeF; YeF,;
where F; and F; are the set of features in datasets d; and d;, respectively. The second
difference measure is the absolute value of Equation (3.10). It is identified as ds|, and is
shown in Equation (3.11).

6|S| = |55| (311)

The third difference measure is the sum of the absolute value of difference between the
entropy of each feature. It is identified as 6z}, and is calculated between two datasets d; and

d; as follows:

Sr= . |H(x)-H(Y)) (3.12)

XiEFi,XjGFj

where F; and F; are the full set of features within datasets d; and d;, respectively.
The fourth difference measure using entropy is the difference between the joint entropy
(H (X;, X;)) of two datasets. The joint entropy of a dataset with two features is calculated
using the joint probability distribution (p(X, Y)) of the features within the dataset:
HX,Y) == " plx, ) logy(p(x, ) (3.13)
xeX yevr
where X and Y are the two features within a dataset. A joint probability distribution can be
calculated for more than two features:
HXy, - X) == > oo ) plan,-oe ,x) logy(plxi, -+, X)) (3.14)
X, xex
where X, is the 7 feature in the dataset. This formulation is problematic in those datasets

where all observations are unique in value, as it will result in maximal entropy, thus providing
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zero differentiation between datasets. To prevent the result of maximal entropy the joint
entropy is calculated in a different way.

Instead of calculating the joint entropy on the values directly, the probability distribution
of each feature is first calculated. A new set of features (F”) is formed that has the same
number of observations and features as the original dataset. For each feature in F, a
probability distribution is calculated using Equations (3.7) and (3.8). Each bin is given a
number starting with one for the bin containing the lowest value, incrementing the value
by 1 for each bin containing successively higher values. Once the edges and bin numbers
are known, the values of each feature are sorted into bins while keeping track of which
observations go into each bin. Each observation of F” is then assigned as a value the bin
number to which the corresponding observation of F was assigned. The new feature set,
F’, 1s then used to calculate the joint probability distribution of all the features. The joint
probability distribution is then used to calculate the joint entropy of the dataset, and finally
to calculate the difference between the joint entropy of two datasets. It is identified as ¢/,

and calculated as follows:
6;=HX},---,X))-H(Y],---.,Y)) (3.15)

where X; and Y, are the /™ features in the feature sets F/ and F %, respectively. The fifth
difference measure is the absolute value of Equation (3.15). It is identified as 6y, and is
shown in Equation (3.16).

O =16yl (3.16)

The last distance measure is Procrustes distance, and has the limitation that all compared
datasets must have the same number of samples. The dissimilarity measure provided by
Procrustes Analysis is a summary statistic of the Euclidean distance (Equation (2.1) where
p = r = 2) between each corresponding point in two datasets after the second dataset is

translated, reflected, rotated, and scaled to optimally superimpose it onto the first dataset.
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3.6.2 Classifiers.

To determine correlation between the difference value and actual classifier performance,
a classifier must be applied to the dataset. Four classifiers were chosen as representative of
the various types of classifiers.

First, to represent a robust type of linear classifier the Support Vector Machine (SVM)
classifier is used. The SVM classifier first maps the data into a higher dimensional space,
and then attempts to find a separating hyperplane which maximizes the separation between
the hyperplane and those data points closest to the hyperplane (the support vectors) within
the higher dimensional space.

Second, to represent the discriminant analysis type of classifier a Quadratic
Discriminant Analysis (QDA) classifier is used. The QDA classifier does not assume
the covariance of each class is identical, unlike Linear Discriminant Analysis (LDA).

Third, to represent the Bayesian type of classifier (one which uses Bayesian probability
theory to calculate posterior probabilities based on current knowledge of priors) the Naive
Bayes (NB) classifier is used. The NB classifier with a kernel distribution is used, as it is
appropriate for features which may have a probability distribution with multiple peaks or
high skewness.

Fourth, to represent the tree type of classifier, Binary Classification Tree (BCT)
classifier is used. The BCT classifier is a simple implementation of the tree type which uses
binary splits for classification. It can produce arbitrary non-linear boundaries for classifying
the features.

Stratified K-fold cross-validation is used to reduce classifier over-fitting while retaining
the proportion of normal to anomalous data in the dataset being partitioned. Each fold will
thus have approximately the same proportion of normal and anomalous traffic as that of the

dataset from which is was derived.
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3.7 Factors
Table 3.1 shows the factors varied during the experiment. Parameters not shown are

held constant while the factors below are varied.

Table 3.1: Factors and levels.

Level Classifier Difference Measure Classifier Performance

1 NB 5, A
2 SVM 5 Ry,
3 BCT S Ry,
4 QDA o

5 Sp

6 Os)

Classifier
The classifier is varied and applied to each dataset. In this way, the correlation between
the performance of multiple classifiers and difference measures can be examined. The
following classifiers are used: SVM, QDA, NB, and BCT. As the correlation between
changes in classifier performance and difference in datasets is the primary metric,

having a wide range of classifiers ensures broad coverage.

Difference measure
The method of quantifying differences between datasets is varied and applied to each

unique pairing of datasets. Six methods are computed: 6, ds, Ojr|, Oy, Op, and Jjg.

Classifier performance
The method of measuring classifier performance is varied and calculated for each

classifier and dataset. Three methods are computed: A, Rp,, and Rp,.
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As the interactions between the various factors are not known, a full-factorial design
is used. The three factors involved in this experiment are the classifier type (SVM, QDA,
NB, and BCT), classifier performance measure (A, Rp,, and Rp,), and difference measure
(07,05,0/F, 0y, 0p, and O5)). The three factors have four, six, and three levels (respectively),

so a total of 4 X 6 X 3 = 72 experiments will be required.

3.8 Result Analysis

As there are 38 datasets, and the differences between each possible combination of two
datasets will be calculated, there will be 703 sets of results for each classifier and 703 results
for each difference measure. This follows from the formula used to determine the number of

combinations which can be selected from a set of objects:

n |
”' (3.17)

YPE—
- (n—r)lr!

where n is the total number of datasets, and r is the number of datasets to select. Thus the

number of ways to select two datasets from 38 is as follows:

38 38! 38! 3837

| G8-2m1 362 2

=19-37 =703 (3.18)

3.8.1 Correlation Between Performance and Difference Measures.

Once classification is complete the change in accuracy, True Positive Rate (TPR), and
False Positive Rate (FPR) must be calculated for each unique combination of datasets. As
the mean True Positives (TP) (P,), False Positives (FP) (Py), Actual Positives (AP) (P,), and
Actual Negatives (AN) (N,) values for each dataset are already available from the results of
the classification runs using stratified K-fold cross validation, it remains to determine the
classifier performance for each selected performance measure. The formulas to classify the

accuracy (A), TPR (Rp,), and FPR (Rp,) for any pair of datasets (d; and d;) follow:
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P,

RP, = P_a

P

RPf = ﬁf

a (3.19)

NI = Na - Pf
A= P, + N;
P,+ N,

For each unique combination of datasets calculate the difference using each of the six
difference measures. Next, calculate the change in performance measure for each of the
three performance measures. Once complete each distinct pair of datasets have the following

associated values.

e Difference between the sum of entropies of each feature (95, see Equation (3.10)).

e Absolute value of the difference between the sum of entropies of each feature (s,

see Equation (3.11)).
e Difference between the joint entropy of each dataset (¢,, see Equation (3.16)).

e Absolute value of the difference between the joint entropy of each dataset (6, see

Equation (3.16)).
¢ Sum of the difference between the entropies of each feature (0jr|, see Equation (3.12)).
e Procrustes distance (p).
e Difference between QDA classifier accuracy.
e Difference between QDA classifier TPR.
e Difference between QDA classifier FPR.
e Difference between NB classifier accuracy.

e Difference between NB classifier TPR.
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Difference between NB classifier FPR.

Difference between BCT classifier accuracy.

Difference between BCT classifier TPR.

Difference between BCT classifier FPR.

Difference between SVM classifier accuracy.

Difference between SVM classifier TPR.

Difference between SVM classifier FPR.

Each unique combination of classifier, performance measure, and difference measure
are then correlated to determine if there is a statistically significant correlation of difference
measure to performance measure.

3.8.2 Classifier Performance Predictive Model.

To test the ability of the model to predict classifier accuracy a subset of the full 38
datasets are selected as the training set, with the remaining datasets left as hold-outs to
evaluate the generality of the developed model. There are a large number of possible subsets

for selecting 19 of the 38 datasets:

38 38! 38! 38-37---21-20
19

T (38— 19)!19! _ 19119! _ 191 = 35345263800 (3.20)

Based on the impossibility of testing all combinations of the sample space, and the
desire to try to cover a reasonable portion of the sample space, 400 prediction trials are
executed. In each trial a linear model is generated in Matlab using the six difference measures
as predictor variables and one of the combinations of classifier and performance measure as
the response variable. Half of the 38 datasets are randomly selected as training datasets, and
half as hold outs. The training datasets are then used to generate the linear model, with the

hold-out datasets used to test the predictive ability of each linear model.
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Once model generation is complete the distinct pairs of hold-out datasets in each trial
have the following associated values for every initial classification repetition, classifier, and

performance measure.

Actual change in classifier performance

Predicted change in classifier performance

Difference between actual and predicted change in classifier performance (residuals)

Model used

The ability of the selected difference measures to predict the change in classifier
performance is evaluated by comparing the distribution of the residuals to the distribution of
the actual classifier performance. For example, if a uniform distribution is assumed for both
residuals and actual values, and if the range of the residuals covers 95% of the range of the
actual classifier performance, then the predictor is giving very little information with respect

to the actual value.

41



IV. Results

4.1 Correlation Within Datasets
The first set of experiments examine the possible correlation of the difference measured
between a baseline dataset (d;) and all other datasets, and the corresponding change in

classifier performance. The hypotheses of this set of experiments follows.

Alternate Hypothesis 1. The difference between a dataset and all other datasets will have

a non-zero correlation with the corresponding changes in classifier performance.

Null Hypothesis 1. The difference between a dataset and all other datasets will have no

correlation with the corresponding changes in classifier performance.

The correlations were computed for each type of classifier, performance measure, and
difference measure. All calculated differences between datasets and change in performance
measures may be found in Appendix B and Appendix C, respectively. For each unique
combination of those three factors, there were 2 sets of 38 correlations and two sets of 38
p-values. For example, the results for correlating o5 (difference between sum of feature

entropies) with Support Vector Machine (SVM) accuracy (A) are in Table 4.1.

Each correlation coefficient in Table 4.1 is calculated using one dataset (the baseline
dataset) as the dataset which is being tested for any statistically significant non-zero
correlation to the SVM accuracy. The correlation calculations, therefore, are based on
the calculations of dataset difference and change in classifier performance from the dataset
(d;) being tested for utility to another dataset (d;). For example, the value for Spearman’s p
for dataset two in Table 4.1 represents the rank correlation between two vectors of data. In
the first vector (Equation (4.1)), each element is the difference measured between dataset

two and the other datasets:

Zz = (0(H,, H,),06(H>, H3), -+ ,6(H>, H37),6(H,, H3g)) 4.1)
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Table 4.1: Correlations and p-values of 65 and SVM accuracy for each baseline dataset.

Dataset Spearman’s p p-value Pearson’sr p-value Dataset Spearman’s p p-value Pearson’sr p-value
1 0.3370 0.0414 0.3311 0.0453 20 0.3511 0.0331 0.3595 0.0289
2 0.3115 0.0606 0.2662 0.1112 21 0.4160 0.0104 0.3302 0.0460
3 0.2023 0.2298 0.1844 0.2746 22 0.2240 0.1827 0.1842 0.2752
4 0.2591 0.1215 0.2413 0.1502 23 0.2570 0.1247 0.2701 0.1060
5 0.1792 0.2886 0.2365 0.1587 24 0.4095 0.0118 0.3776 0.0212
6 0.2804 0.0927 0.2806 0.0925 25 0.2897 0.0820 0.3168 0.0561
7 0.2015 0.2318 0.2108 0.2103 26 0.3957 0.0153 0.3723 0.0233
8 0.4350 0.0071 0.3900 0.0170 27 0.4864 0.0023 0.4780 0.0028
9 0.2636 0.1149 0.2542 0.1289 28 0.2936 0.0778 0.2943 0.0770
10 0.3150 0.0576 0.3225 0.0516 29 0.3520 0.0327 0.4139 0.0109
11 0.3386 0.0404 0.3548 0.0312 30 0.3338 0.0435 0.3392 0.0400
12 0.3364 0.0418 0.2756 0.0987 31 0.2515 0.1333 0.2839 0.0886
13 0.1712 0.3109 0.2007 0.2337 32 0.1526 0.3673 0.1955 0.2463
14 0.3019 0.0694 0.2381 0.1558 33 0.1901 0.2598 0.1572 0.3527
15 0.3771 0.0214 0.2696 0.1065 34 0.3420 0.0383 0.3513 0.0330
16 0.3409 0.0389 0.3590 0.0291 35 0.3404 0.0392 0.3126 0.0596
17 0.2587 0.1220 0.2928 0.0787 36 0.3170 0.0559 0.2715 0.1041
18 0.3320 0.0447 0.3034 0.0680 37 0.3326 0.0443 0.3453 0.0363
19 0.3100 0.0619 0.3444 0.0369 38 0.3575 0.0298 0.3320 0.0447

Note that the difference between the baseline dataset and itself is omitted, as the
difference will always be zero. In the second vector (Equation (4.2)), each element is the
change in SVM classification accuracy from dataset dataset one to another dataset, calculated

by subtracting the accuracy of SVM on other datasets from the accuracy on dataset two:
Ay =(Ay— A1, Ay — A3, -+ ,Ar — A7, Ay — Asg) (4.2)

As the goal is to find a distance or difference measure which correlates to the changes
in classifier performance, there is one indicator which, when combined with a p-value
indicating statistically significant correlation, will demonstrate a consistent correlation

between changes in difference and accuracy: the sign of the correlation coefficient. A
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positive or negative correlation for all 38 datasets indicates the changes measured by the
difference measure are related to the accuracy of the classifier regardless of the initial dataset.
As a secondary concern, large magnitude correlations are a desired outcome: a consistently
small correlation may be interesting, but larger magnitudes will be more useful for purposes
of developing a predictive model.

Two conditions are necessary to reject the null hypothesis. First, the correlation must
be statistically significant, with a p-value of less than 0.05. Second, the correlations for
a given difference measure must be significantly different from zero. For the second to
be meaningful, the first must be met: the null hypothesis cannot be rejected based on all
correlations having the same sign if the results are not statistically significant. To determine
if any of the results were sufficient to reject the null hypothesis it is necessary to calculate
the number of results where all p-values are less than 0.05. There were no combinations of
classifier, performance measure, and difference measure that met the first condition. The
results with the most number of statistically significant results had only 33 of the 38 p-values
(87%) less than 0.05. If there were many results which were significant for more than
85% of the datasets then they might merit further examination, however the distribution of
values is such that most of the correlations were not significant. As shown in Figure 4.1, the
distribution of significant p-value counts is such that most of the correlation results are not

statistically significant.

Based on the results of the first set of experiments, there is insufficient evidence to
reject Null Hypothesis 1 for any of the combinations of classifier, performance measure, and
difference measure. There is insufficient evidence for the difference between a dataset and
all other datasets having a non-zero correlation with the corresponding change in classifier

performance.
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Figure 4.1: Histogram of Spearman’s p (upper) and Pearson’s r (lower) p-values.
Histograms are per classifier, but combine all 20 repetitions and 18 possible pairings of

difference and performance measures for each.

4.2 Correlation Across Datasets

Examination of the correlation of the differences between a single dataset and all other
datasets and the corresponding change in classifier performance failed to produce sufficient
evidence to reject the null hypothesis. However, the data can be examined in another way by
combining the differences and classifier performance for all 703 unique combinations of
datasets, and analyzing the correlation between each set of 703 differences and 703 changes

in performance measure. The hypotheses of this set of experiments follows.

Alternate Hypothesis 2. The difference between the unique pair-wise combinations of all
38 datasets will have a non-zero correlation with the corresponding changes in classifier

performance.

Null Hypothesis 2. The difference between the unique pair-wise combinations of all 38

datasets will have no correlation with the corresponding changes in classifier performance.
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The correlations were computed for each type of classifier, performance measure, and
difference measure. For each unique combination of those three factors, there were 20

repetitions of 2 correlations and twenty repetitions of 2 p-values.

Again, two conditions are necessary to reject the null hypothesis. First, the correlation
must be statistically significant, with a p-value of less than 0.05. Second, the correlations
for a given difference measure must be significantly different from zero. For the second to
be meaningful, the first must be met: the null hypothesis cannot be rejected based on all
correlations having the same sign if the results are not statistically significant. To determine
if any of the results were sufficient to reject the null hypothesis it is necessary to calculate
the number of results where all p-values are less than 0.05. While the p-values demonstrate
that not all correlations in the results are statistically significant, they also indicate areas
where the majority of the correlations are significant, and therefore which combinations of
classifier and performance measure can be examined. There were multiple combinations of
difference measure, classifier, and performance measure that met the first condition. Those
combinations that did are shown in Table 4.2.

For every experiment in Table 4.2 there is sufficient evidence to reject Null Hypothesis
2. Therefore, there is evidence that the correlation of the difference between the unique pair-
wise combinations of all 38 datasets and the corresponding change in classifier performance
is non-zero. Given the number of combinations that showed a significant correlation to
classifier performance, it may be possible to predict the performance of a classifier knowing

only the difference between the datasets.

4.3 Visual Examination
The Spearman and Pearson correlation coefficients are valid checks for correlation, but
a visual check of a data is often good for verifying the results. In this case, the scatter and

Quantile-Quantile (QQ) plots can provide insight into the shape of the results, including
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Table 4.2: Combinations of difference, classifier, and performance with significant
Spearman and Pearson correlation in all repetitions. Normality is tested using the
Chi-square goodness of fit test, and difference from zero is tested using the one sample

t-test.

Difference Classifier Performance Normal # 0 u) a(p) u(r) a(r)

oy SVM A True True 0.3772 0.0037 0.3710 0.0035
oy SVM Rp, True True -0.2436 0.0342 -0.2710 0.0277
oy QDA A True  True -0.2875 0.0041 -0.2861 0.0040
oy QDA Rp, True True 0.2147 0.0049 0.2434 0.0023
oy NB A True  True -0.0939 0.0047 -0.1010 0.0038
o NB Rp, True  True 0.1977 0.0093 0.2306 0.0014
oy BCT Rp, True True 0.2615 0.0151 0.2992 0.0145
oy BCT Rp, True True -0.1184 0.0133 -0.2127 0.0099
Os SVM A True True 0.3495 0.0043 0.3485 0.0038
s SVM Rp, True  True -0.2378 0.0288 -0.2373 0.0221
s QDA A True True -0.2224 0.0029 -0.2215 0.0031
Os QDA Rp, True True 0.2746 0.0048 0.2932 0.0014
Os NB Rp, True True 0.2915 0.0075 0.2867 0.0016
Os NB Rp, True  True -0.1023 0.0027 -0.1480 0.0026
Os BCT A True True 0.3206 0.0202 0.3399 0.0203
s BCT Rp, True True 0.4628 0.0126 0.4413 0.0129
s BCT Rp, True True -0.2240 0.0125 -0.2411 0.0098
Ol NB A True  True -0.1442 0.0020 -0.1426 0.0020
Oiry BCT A True  True -0.1534 0.0089 -0.1723 0.0067
O BCT Rp, True  True -0.0932 0.0061 -0.0847 0.0059
Ojs| BCT A True  True -0.1149 0.0092 -0.1274 0.0069

some patterns which become evident. The most obvious example of the pattern which

occurs in some of the plots is shown in Figure 4.2.
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Figure 4.2: Striations echoed in both the scatter and QQ plots.

When present, the striation evident in Figure 4.2 is always in both the scatter and QQ
plots. The displayed plots are the most obvious demonstrations of striation within the plots,
but there are a total of seven of the 21 combinations which display the striations to a greater
or lesser extent. The common striations in the scatter and QQ plots is further reason to be
cautious in making claims based on these correlations. The other 14 combinations display a
reasonable fit between the two distributions. There are minimal patterns within the scatter
plots, and the QQ plots are fairly well matched: there are no perfect fits as shown by the

three sets of plots showing a sampling from the remaining 14 combinations in Figure 4.3.
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Figure 4.3: Sample of reasonable fits in both the scatter and QQ plots.

There is no type of difference (accuracy, true positive rate, and false positive rate)
result that both correlates and is statistically significant for every classifier and dataset,

although there are some that correlate for 36 or 37 of the datasets for a given classifier.
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That is an indication that the difference measures chosen may not be the best measures for
this particular use. The results are also an indication that more exploration may help in
understanding why certain datasets result in correlations, and others do not.

The observation that a correlation exists between an entropy-based measure of
difference and the change in classification results of all types of tested classifiers suggests
that the prediction of classifier performance may be possible. Given a known dataset (d;) and
performance on that dataset, it may be possible to predict the classifier efficacy on a different
dataset (d;) based on the calculated difference between d; to d;. Given the different ways
classifiers can be parameterized, and the methods which can be used to optimize results, it
could be possible to provide estimates of classification accuracy, true positive rate, or false

positive rate results.

4.4 Modeling Performance

The goal of this research is to produce a useful system to measure dataset difference
that can be used to predict classifier performance change. Linear models are developed to
predict classifier accuracy change based upon the difference measures calculated for each
unique pair of datasets.

To test the ability of a linear model to predict classifier accuracy 400 prediction runs
are executed. In each run a linear model is generated using the six difference measures as
predictor variables and one of the combinations of classifier and performance measure as
the response variable. Half of the 38 datasets are randomly selected as datasets to be used in
training the linear model, and half as hold-outs. The training datasets are used to generate
the linear model, and the hold-out datasets are used to test the predictive accuracy of the
linear models.

Once complete the linear models are used to predict the change in classifier performance
in the hold-out datasets. The actual performance change is subtracted from the predicted

change to calculate the error for each set of prediction runs. Thereafter, every combination of
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classifier and performance measure is associated with 400 sets of 171 actual, predicted, and
error values. Individual runs may not be representative of the overall prediction capability
of the model, therefore the probability distribution of values for all 400 runs of the actual,

predicted, and errors are examined for each classifier.

Table 4.3: The minimum, 5 percentile, median, 95 percentile, and maximum prediction
error of each classifier performance measure across all 400 prediction runs and 20

classification repetitions.

Minimum 5" percentile ~Median 95" percentile Maximum

SVM accuracy -0.47477 -0.25423 0.00550 0.22407 0.48619
QDA accuracy -0.56089 -0.19656 0.00385 0.18675 0.38862

NB accuracy -0.52048 -0.17528 0.00362 0.15882 0.35585
BCT accuracy  -0.10247 -0.04514 0.00110 0.04165 0.09603
SVM TPR -0.62338 -0.29282 -0.01361 0.31020 0.75087
QDA TPR -1.58474 -0.83083 -0.02096 0.90831 2.07642
NB TPR -1.42219 -0.73996 0.00534 0.72415 1.36357
BCT TPR -0.34932 -0.11881 -0.00078 0.13058 0.31741
SVM FPR -0.54008 -0.29148 0.00465 0.28863 0.77028
QDA FPR -2.14895 -1.10277 0.03038 1.19280 2.87723
NB FPR -1.80074 -0.97441 0.01531 1.03935 2.08443
BCT FPR -0.99866 -0.33455 0.00147 0.32241 091144

A large range among the errors can limit the utility of the predictions, so it is useful
to determine which performance measure has the least error between predicted and actual
performance, or residual, across all classifiers. To do so the minimum, 5t percentile,

median, 95 percentile, and maximum value of each error distribution (across all 400 runs)
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are calculated, and listed in Table 4.3. It is clear from the data in Table 4.3 that the models
are most successful in predicting the accuracy performance measure. The True Positive
Rate (TPR) and False Positive Rate (FPR) of some classifiers have 5 percentile errors as
large as —1.13 (Quadratic Discriminant Analysis (QDA) FPR). As an example of the effect
large errors could have on prediction, an error of —1.13 would result in a predicted change
in FPR of —0.23, while the actual change in FPR is 0.9. Given the large errors in TPR
and FPR, accuracy is pursued as the performance measure most likely to be predicted with
acceptable error.

Based on the distribution of residuals summarized in Table 4.3, accuracy is the most
promising performance measure with respect to predicting classifier performance: for every
classifier, the range of values between the 5" and 95" percentiles is less than the entire
possible range. The residuals of each classifier are examined, and compared with the
distribution of the actual classifier accuracy, to determine the predictive ability. Note that
for the accuracy distributions in Figures 4.4, 4.5, 4.6 and 4.7 if the 95" percentile line is
above one, it is shown on the one. As an accuracy greater than one is not possible, there is
no value in positioning the line on a value greater than one.

The first set of histograms examined are those in Figure 4.4 from the SVM classifier.
The histogram of the actual classification values are shown to demonstrate the possible
range of the predicted accuracy. Using the distribution of the SVM prediction residuals in
Table 4.3, and assuming the predicted accuracy on the dataset being used is 0.85, the 90%
confidence range of predicted accuracy would be from 0.60 to 1. The range of prediction

residuals can cover the entire range of actual accuracy, resulting in no predictive ability.

The second set of histograms examined are those in Figure 4.5 from the QDA classifier.
The histogram is again evaluated to determine whether the linear model provides any
significant predictive ability. Based upon the range of the actual classification accuracies, the

distribution of residuals, and assuming the predicted accuracy of 0.85, the 90% confidence
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Figure 4.4: Histogram of 1,368,000 SVM classifier accuracies and error between predicted
and actual accuracies, or residuals. The 1,368,000 is the result of the 171 unique pairings
of 19 datasets, 20 classification repetitions, and 400 linear model predictive runs. The 90%
confidence interval for the residuals is marked both on the residual plot, and on the accuracy

plot assuming a predicted accuracy of 0.85.

range of predicted accuracy would be from 0.65 to 1. Again, the range of prediction residuals

can cover the entire range of actual accuracy, resulting in no predictive ability.

The third set of histograms examined are those in Figure 4.6 from the Naive Bayes (NB)
classifier. The histogram is again evaluated to determine whether the linear model provides
any significant predictive ability. Based upon the range of the actual classification accuracies,
the distribution of residuals, and assuming the predicted accuracy of 0.85, the 90%
confidence range of predicted accuracy would be from 0.67 to 1. Again, the range of
prediction residuals can cover the entire range of actual accuracy, resulting in no predictive

ability.

The fourth set of histograms examined are those in Figure 4.7 from the Binary

Classification Tree (BCT) classifier. The histogram is again evaluated to determine whether
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Figure 4.5: Histogram of 1, 368,000 QDA classifier accuracies, and linear model prediction
residuals. The 1,368,000 is the result of the 171 unique pairings of 19 datasets, 20
classification repetitions, and 400 linear model predictive runs. The 90% confidence interval
for the residuals is marked both on the residual plot, and on the accuracy plot assuming a

predicted accuracy of 0.85.

the linear model provides any significant predictive ability. Based upon the range of the
actual classification accuracies, the distribution of residuals, and assuming the predicted
accuracy of 0.96, the 90% confidence range of predicted accuracy would be from 0.91 to
1. In this case, the range of prediction does not quite cover the entire range of accuracies,

failing to cover 0.0012 of the actual accuracy range, but there is still no predictive ability.

When comparing the results of predicting the change in accuracy of all four classifiers,
shown in Figure 4.8, the linear model predictions for the change in SVM classifier accuracy
have the widest range. This is also shown in Table 4.3, where the 5t percentile is 0.05
below, and the 95" percentile is 0.04 above, the nearest classifier. As the prediction results
on SVM are the worst among all classifiers tested, any future efforts to reduce the size of

prediction residuals should focus upon the prediction of change in SVM accuracy.
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Figure 4.6: Histogram of 1, 368,000 NB classifier accuracies, and linear model prediction
residuals. The 1,368,000 is the result of the 171 unique pairings of 19 datasets, 20
classification repetitions, and 400 linear model predictive runs. The 90% confidence interval
for the residuals is marked both on the residual plot, and on the accuracy plot assuming a

predicted accuracy of 0.85.

For every classifier evaluated the distribution of the prediction residuals is such that
predicted values could represent an actual value anywhere in the range of possible accuracies
(see Table 4.4). Based on the evaluation of the developed linear models, there is no evidence

that the developed models provide any significant predictive ability.
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Figure 4.7: Histogram of 1,368, 000 BCT classifier accuracies, and linear model prediction
residuals. The 1,368,000 is the result of the 171 unique pairings of 19 datasets, 20
classification repetitions, and 400 linear model predictive runs. The 90% confidence interval
for the residuals is marked both on the residual plot, and on the accuracy plot assuming a

predicted accuracy of 0.96.

Table 4.4: Range of linear model prediction residuals and actual classifier accuracy.

Range

Residuals Actual Accuracy

SVM  0.4783 0.3670
QDA 0.3833 0.2930
NB 0.3341 0.3040
BCT  0.0868 0.0880
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V. Conclusion

This chapter summarizes research into developing a system that predicts the change
in classifier performance using linear models built from the differences measured between
datasets, and the results presented in Chapter 4. Recommendations for future research are
suggested by these results. The future work aims to improve the ability to model classifier

performance as a function of differences between datasets.

5.1 Summary

The goal of this research was to develop a Classifier Accuracy Prediction System
(CAPS) to predict the changes in classifier accuracy using the differences between datasets,
and verify the prediction accuracy using the comparison of the distribution of the linear
model prediction residuals and actual classifier accuracy over multiple prediction trials.

The first step in developing the CAPS was determining the type of difference measures
which could be useful in predicting classifier accuracy, and determining the types of
classifiers to be used. The difference measure types to be used were based upon the
spatial and probabilistic measures available, although most were disparate types of entropy.
Regarding selection of classifiers, a range were chosen to ensure broad coverage of the
types of classifiers available to Network Intrusion Anomaly Detection (NIAD) developers
and researchers. Correlations were performed to determine whether dataset-to-dataset
correlations existed for all unique combinations of datasets, and it was determined they
did not. Further examination of the differences between datasets and changes in classifier
accuracy led to the calculation of correlation across datasets: correlating the differences of
all unique combinations of datasets to the corresponding changes in accuracy. There was
significant correlation among those values using two difference measures in particular: the

difference between the sum of feature entropies, and the difference between joint entropy.
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Despite consistent correlation, the linear models developed to predict classifier performance
did not provide any evidence to support significant predictive ability.

While unable to progress to actual Network Intrusion (NI) datasets, this system of
prediction provides a foundation upon which future work in the area of classifier performance

prediction can be based.

5.2 Future Work

There are several areas in which the work presented here can be expanded. This section
examines some of those areas for future research possibilities.

The results herein are based upon difference measures that are limited in scope, are
not strongly correlated with the classifier performance changes, and do not fully explore
the possible methods of measure difference. It will be useful for future researchers to
methodically examine the use of different types of difference measures within the CAPS,
to determine their utility for prediction of the change in classifier performance between
datasets. It would also be useful to have a distance/similarity measure which had stronger
consistent negative or positive correlations with the classification results, as that would allow
better predications of the classification outcome based on distance from a common dataset.

The representation of difference as a scalar may not be as useful as a two, three, or
n-dimensional representation of the distance or difference. Generating a vector within an
entropy-space by using the entropy of each feature of a dataset may allow use of the distance
while retaining information such as whether the distance is an increase or a decrease.

The number of features required for the change in accuracy to correlate with the
difference between datasets is another metric which could provide some measure of how
much information would be needed to represent a dataset effectively. Determining minimum
number of features could give a lower-bound on the usefulness of any dataset for the
purposes of predicting classifier performance, as any dataset without those features would

be useless in predicting classifier performance.
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The last recommendation for future work is related to the type of model used to predict
accuracy. It is possible that the proper model to predict classifier accuracy is not linear
in nature. Given that possibility, exploration of the different types of models available for
predictive modeling would be of benefit. Identifying those models which were most useful
may also give clues as to what other distance measure may prove useful as predictive terms.

These areas for future work are certainly not the only areas available. There are many
others which have not been considered. Given the demonstrated correlation of the differences
between datasets to the change in classifier performance on corresponding datasets, and the
inability to predict the actual accuracy value using a linear model, continued research into

this area using other models is indicated.
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